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Abstract. Statistical moments of the intensity distributions are used as molecular descriptors. They are
used as a basis for defining similarity distances between two model spectra. Parameters which carry the in-
formation derived from the comparison of shapes of the spectra and are related to the number of properties
taken into account, are defined.

PACS. 29.85.+c Computer data analysis – 07.05.Kf Data analysis: algorithms and implementation; data
management – 33.20.-t Molecular spectra – 33.70.-w Intensities and shapes of molecular spectral lines and
bands

1 Introduction

The periodic table of elements is the simplest and the
most important construct establishing similarity between
atoms. Defining measures of similarity between molecules
is much more complicated and, though very important in
both theoretical and practical dimensions, it was not se-
riously attempted until some 25 years ago [1]. Since then,
many indices of molecular similarity have been defined
and successfully used in establishing criteria of molecular
similarity [2]. In the present work we propose a new set of
molecular similarity indices. These indices relate shapes of
molecular spectra. We assume that the degree of similarity
of molecules is correlated with the degree of similarity of
their spectra. On the other hand, as it is known from the
statistical spectroscopy [3–5], spectra are similar if their
intensity distribution moments are close. Since the evalu-
ation of these moments is easy, their using as molecular
descriptors seems to be an attractive option.

Moments of the intensity distribution, Iγ(E), belong
to a set of fundamental concepts of statistical theory of
spectra. In the case of discrete spectrum, the n-th statis-
tical moment is defined as:

Mγ
n =

∑

i

Iγ
i (E)En

i

∑

i

Iγ
i (E)

, (1)

where Iγ
i is the intensity of the i-th line and Ei is the

corresponding energy difference. If the spectral lines are
sufficiently close to each other, then the spectrum may be
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approximated by a continuous function. Then, the n-th
moment of the intensity distribution is defined as:

Mγ
n =

∫

C(E)

Iγ(E)EndE

∫

C(E)

Iγ(E)dE
, (2)

where C(E) is the range of the energy for which the
integrand does not vanish. It is convenient to consider
normalized spectra Iγ(E) = NγIγ(E), where Nγ =
(
∫

C(E) Iγ(E)dE)−1, for which the area below the distri-
bution function is equal to 1. Convenient characteristics of
the distributions may be derived from the properly scaled
distribution moments. Moments normalized to the mean
value equal to zero (Mγ′

1 = 0) are referred to as the cen-
tered moments. The n-th centered moment reads:

Mγ′
n =

∫

C′(E)

Iγ(E)(E − Mγ
1 )ndE. (3)

The moments, for which additionally the variance is equal
to 1 (Mγ′′

2 = 1) are defined as

Mγ′′
n =

∫

C′′(E)

Iγ(E)

[
(E − Mγ

1 )
√

Mγ
2 − (Mγ

1 )2

]n

dE. (4)

In this work the model spectra are approximated by con-
tinous functions taken as linear combinations of max un-
normalized Gaussian distributions centered at εi with dis-
persions σi, defined by the parameters ci = 1/(2σ2

i ),
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i = 1, 2, . . .max:

Iγ(E) = Nγ
max∑

i=1

ai exp
[−ci(E − εi)2

]
. (5)

The normalization constant Nγ is determined so that the
zeroth moment of the distribution Iγ(E) is equal to 1.

The n-th moment of the distribution is equal to:

Mγ
n = Nγ

max∑

i=1

∫

C(E)

ai exp
[−ci(E − εi)2

]
EndE. (6)

After some algebra we get the expressions for the moments
as functions of the parameters describing the height (ai),
the width (ci) and the locations of the maxima (εi). In
particular,

Nγ =

(
max∑

i=1

ai

√
π

ci

)−1

(7)

and, for q = 1, 2, 3,

Mγ
q = Nγ

max∑

i=1

εiaiQ
(q)
i

√
π

ci
, (8)

where Q
(1)
i = 1, Q

(2)
i = εi + 1/(2ciεi) and Q

(3)
i = ε2i +

3/(2ci).
According to the so called principle of moments [5]

we expect that if we identify the lower moments of two
distributions, we bring these distributions to approximate
identity. In this paper we apply this principle to the the-
ory of molecular similarity. We assume that molecules have
similar properties if their intensity distributions and, con-
sequently the corresponding moments, are approximately
the same.

We propose that a set of statistical moments of the
intensity distributions can be treated as a new kind of
molecular descriptors. A very clear meaning has the first
moment, M1, which describes the mean value of the dis-
tribution. In a similar sense a colour index has been intro-
duced in astronomy [6] — its value allows us to compare
spectra of different stars (it carries an information about
molecules forming the star). The second centered moment,
M ′

2, is the variance, which gives the width of the distribu-
tion. M ′′

3 is the skewness coefficient which describes the
asymmetry of the spectrum. The kurtosis coefficient M ′′

4
is connected to the excess of the distribution.

2 Theory and the model spectra

According to the method of moments, the shapes of two
distributions are more similar if the number of identical
moments is larger. Similarity of distributions in two- and
three-moment approximations, in the context of the con-
struction of envelopes of electronic bands, has been an-
alyzed in references [7–10]. Analogously, we define simi-
larity parameters Si1i2...ik

k (k is the number of properties

taken into account in the process of comparison) as a nor-
malized information derived from a comparison of two dis-
tributions, referred to as α and β:

Si1i2...ik

k =

√
1
k

(
D2

i1
+ D2

i2
+ . . . D2

ik

)
, (9)

where i1 < i2 < . . . ik. Here n is the total number of prop-
erties taken into account in the comparison of the two
spectra and ik = 1, 2, . . . n (k = 1, 2, . . . n), correspond
to a specific property. In particular, as the property num-
ber one (ik = 1) we take the first moment, as the property
number two (ik = 2) we take the second centered moment,
number three (ik = 3) — the asymmetry coefficient, num-
ber four (ik = 4) — the kurtosis coefficient. In this paper
we take n = 4 and the corresponding similarity distances
are defined as follows:

Dq = 1 − exp
[

−
(
Pα

(q) − P β
(q)

)2
]

, (10)

where P γ
(1) = Mγ

1 , P γ
(2) = Mγ′

2 , P γ
(3) = Mγ′′

3 , P γ
(4) = Mγ′′

4

and γ = α, β. The values of all the descriptors may vary
from 0 (identical properties) to 1.

We also define an additional parameter which may be
evaluated if both spectra we are going to compare are
available:

D =
1
2

∫

C′(E)

|I ′α(E) − I ′β(E)|dE. (11)

This parameter is given by the integral of the module of
the difference between the compared distributions and is
not related to the moments. In the definition of D, I ′ de-
notes the distributions transformed so that their averages
are the same. If we compare two distributions of the same
shape then D = 0. If two distributions do not overlap
at all, then D = 1. It is important to note that the dis-
tribution moments are defined as numbers attached to a
given spectrum and the similarity distances Dq are easily
derived from the knowledge of these numbers. The param-
eter D, though it gives accurate information about simi-
larity of two spectra, is rather cumbersome since it may
be derived only if the complete spectra are given.

If two model molecules (or rather their spectra) are
identical, up to the accuracy determined by the consid-
ered properties, then all Si1i2...ik

k are equal to 0. The max-
imum value of Si1i2...ik

k is 1 and corresponds to two spec-
tra with no common features within the considered set of
properties.

The result of a comparison of two different objects de-
pends not only on the number of properties taken into
account but also on their choice (i1 or i2 or . . . in). There-
fore the quantities Si1i2...ik

k defined in equation (9) should
be averaged by taking all combinations of the indices ik.
Thus, we define parameters Sk as the appropriate averages
of Si1i2...ik

k :

Sk =
(

n

k

)−1 n∑

i1<i2<...<ik

Si1i2...ik

k . (12)

In our case n = 4 and k = 1, 2, 3, 4.
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Fig. 1. Two intensity distributions (solid and dashed lines)
and the corresponding similarity parameters S4 (sequence I).

3 Results and discussion

In order to illustrate our approach, we took model spec-
tra consisting of two bands, i.e. having two maxima
(max = 2):

Iγ(E) = Nγ
[
a1 exp

[−c1(E − ε1)2
]

(13)

+a2 exp
[−c2(E − ε2)2

]]
,

where γ = {c1, a1, ε1, c2, a2, ε2}. In order to see relations
between molecular spectra, defined in equation (14) and
the similarity indices defined in equations (10–12) in a
simple and transparent way, we study three sequences of
spectra, where in each sequence only one parameter has
been modified: c2 in sequence I, a2 in sequence II, ε2 in
sequence III.

(a) Sequence I corresponds to the situation when a sym-
metric spectrum consisting of two identical Gaussian
distributions shifted relative to each other by ε2− ε1 =
1 (a1 = a2 = 1.0, ε1 = 1.2, ε2 = 2.2, c1 = c2 = 5.0)
transforms to a distribution in which the width of one
of the Gaussians changes due to the change of the pa-
rameter c2 = 5.0 + δc, where δc ∈ 〈0; 19.8〉. Then,
we compare shapes of intensity distributions Iα(E)
and Iβ(E), where α = {5.0, 1.0, 1.2, 5.0, 1.0, 2.2}, β =
{5.0, 1.0, 1.2, 5.0 + δc, 1.0, 2.2}.
In Figure 1 spectra corresponding to δc = 0 (solid
lines) and δc > 0 (dashed lines) are compared. In each
case values of δc and S4 are given. A correlation be-
tween these two numbers and between shapes of the
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Fig. 2. Two intensity distributions (solid and dashed lines)
and the corresponding similarity parameters S4 (sequence II).

spectra is clearly seen. The value of S4 increases when
the two spectra become less similar.

(b) Sequence II corresponds to the same symmetric spec-
trum as before (a1 = a2 = 1.0, ε1 = 1.2, ε2 = 2.2,
c1 = c2 = 5.0) transforming to the distributions in
which the height of one of the Gaussians changes due to
the changes of a2 = 1.0+δa, where δa ∈ 〈0; 9.9〉. Then,
we compare shapes of intensity distributions Iα(E)
and Iβ(E), where α = {5.0, 1.0, 1.2, 5.0, 1.0, 2.2}, β =
{5.0, 1.0, 1.2, 5.0, 1.0+ δa, 2.2}.
In Figure 2 spectra corresponding to δa = 0 (solid
lines) and δa > 0 (dashed lines) are compared. In each
case values of δa and S4 are given. The conclusions are
similar to those in the case of Figure 1.

(c) Sequence III corresponds to a similar situation as be-
fore, except that the maxima in Iα are shifted by
1.5 rather than by 1 (a1 = a2 = 1.0, ε1 = 1.2,
ε2 = 2.7, c1 = c2 = 5.0). Iα transforms to the
distribution Iβ for which one of the Gaussian dis-
tribution changes the location of the second maxi-
mum ε2 = 2.7 − δε, where δε ∈ 〈0; 0.99〉. Then,
we compare shapes of intensity distributions Iα(E)
and Iβ(E), where α = {5.0, 1.0, 1.2, 5.0, 1.0, 2.7}, β =
{5.0, 1.0, 1.2, 5.0, 1.0, 2.7− δε}.
In Figure 3 spectra corresponding to δε = 0 (solid
lines) and δε > 0 (dashed lines) are compared. In each
case values of δε and S4 are given. The conclusions are
similar to those in the cases described by Figures 1
and 2.
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Fig. 3. Two intensity distributions (solid and dashed lines) and
the corresponding similarity parameters S4 (sequence III).

The molecular descriptors [statistical moments of Iβ(E)]
are plotted in Figure 4 versus δc (sequence I), δa (se-
quence II), δε (sequence III). In case of sequence I, it is
clear that the considered change of the spectrum leads to
a decrease of the first moment (the intensity is shifted
towards smaller energies). The dispersion of the whole
distribution also decreases (Mβ′

2 ). The asymmetry of the
spectrum changes from totally symmetric (Mβ′′

3 = 0) to
asymmetric (Mβ′′

3 �= 0). The kurtosis coefficient Mβ′′
4

changes as it is presented, in a non-monotonic way. It
is interesting that for Mβ′′

3 and Mβ′′
4 minima appear for

δc �= 0. In the case of sequence II, with an increase of δa
the first moment is shifted towards higher values and the
dispersion of the whole spectrum decreases. The asymme-
try of the spectrum decreases and the kurtosis parameter
increases. In case of sequence III, shifting the second max-
imum ε2 to the smaller energies results in a distribution
with one maximum instead of two and the intensity is
shifted towards smaller energies. In consequence the first
moment decreases. The whole distribution becomes more
narrow and, consequently, we observe decreasing of Mβ′

2 .
For all δε distributions are symmetric (Mβ′′

3 = 0) and the
kurtosis parameter increases.

Figure 5 presents D defined in equations (10) and (11).
In the case of sequence I, if δc = 0, we compare two identi-
cal distributions and all the descriptors are equal to zero.
The most sensitive to the changes of δc is in this case D,
contrary to the other descriptors which are nearly con-
stant. The two distributions are rather similar in sense of
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Fig. 4. Moments of the distributions as functions of δc (se-
quence I), δa (sequence II), δε (sequence III).

the average value, of the width, of the asymmetry and of
the kurtosis (the values of D1, D2, D3, D4 are small and
the corresponding curves cross). In case of sequence II, we
observe small values of D2 and D1, that indicates large
similarity of the two distributions in sense of the width
and of the average values. For small values of δa we ob-
serve crossings between D3, D4 and D. The most sensitive
to the changes of δa is D4. In case of sequence III, the
behaviour of D1 and D2 is very similar. Both spectra are
totally symmetric (Mα′′

3 = Mβ′′
3 = 0). Therefore D3 = 0

for all δε. D4 and D cross and change very substantially
contrary to D1 and D2 which are nearly constant.

Figure 6 presents similarity parameters Sk for k =
1, 2, 3, 4 (Eq. (12)). Small values of S correspond to high
similarity of the model spectra. In particular, if δc = 0
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Fig. 5. Parameters D as functions of δc (sequence I), δa
(sequence II), δε (sequence III).

(sequence I) then Sk = 0 for all k. As we can see, S is the
smallest for k = 1 and increases with increasing k. Anal-
ogously to the sequence I, S1 < S2 < S3 < S4 for all δa
(sequence II) and for all δε (sequence III). Intuitively, we
expect that two systems which are similar to each other
when only one property is considered may exhibit more
differences if we look at the systems in more detail, taking
into account more properties. These features can be seen
in Figure 6.

4 Conclusions

Statistical moments describe in an adequate way the de-
gree of similarity of two-band model spectra. Though the
mathematical model describing shapes of the spectra is
relatively simple, it reflects the behaviour of real molec-
ular spectra. Three parameters: c2, a2 and ε2, influence
different aspects of the shapes of spectra and the result-
ing values of D. In particular, parameters D and corre-
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Fig. 6. Parameters Sk as functions of δc (sequence I), δa (se-
quence II), δε (sequence III).

sponding S are the smallest if a2 and ε2 are constant (se-
quence I). In these cases spectra are only slightly modified
by δc (Fig. 1). Larger differences of spectra are caused by
parameter δa , while c2 and ε2 are constant (sequence II).
The influence of ε2 on spectra is also large (sequence III).
The additional parameter D introduces some independent
information about spectra. Contrary to the case of single-
band model spectra studied in our previous paper [11],
where its behaviour is very similar to D4, here it appears
to be the most sensitive index (sequence I).

Summarizing, we demonstrated that spectral density
distribution moments can be used for defining similarity
indices of spectra. By grouping molecules according to the
spectral density distribution moments we can get a chance
to discover new characteristics in the field of molecular
similarity and in particular it may be a tool for studies in
the area of computational toxicology [12–14].
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